A Stagewise Least Square Loss Function for Classification

نویسندگان

  • Shuang-Hong Yang
  • Bao-Gang Hu
چکیده

This paper presents a stagewise least square (SLS) loss function for classification. It uses a least square form within each stage to approximate a bounded monotonic nonconvex loss function in a stagewise manner. Several benefits are obtained from using the SLS loss function, such as: (i) higher generalization accuracy and better scalability than classical least square loss; (ii) improved performance and robustness than convex loss (e.g., hinge loss of SVM); (iii) computational advantages compared with nonconvex loss (e.g. ramp loss in ψlearning); (iv) ability to resist myopia of Empirical Risk Minimization and to boost the margin without boosting the complexity of the classifier. In addition, it naturally results in a kernel machine which is as sparse as SVM, yet much faster and simpler to train. A fast online learning algorithm with an integrated sparsification procedure is also provided. Experimental results on several benchmarks confirm the advantages of the proposed approach. keywords: Supervised Learning; Classification; Loss Function; Kernel Methods; Online Learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general framework for fast stagewise algorithms

Forward stagewise regression follows a very simple strategy for constructing a sequence of sparse regression estimates: it starts with all coefficients equal to zero, and iteratively updates the coefficient (by a small amount ) of the variable that achieves the maximal absolute inner product with the current residual. This procedure has an interesting connection to the lasso: under some conditi...

متن کامل

Multi-class Boosting

This paper briefly surveys existing methods for boosting multi-class classication algorithms, as well as compares the performance of one such implementation, Stagewise Additive Modeling using a Multi-class Exponential loss function (SAMME), against that of Softmax Regression, Classification and Regression Trees, and Neural Networks.

متن کامل

Self-concordant analysis for logistic regression

Most of the non-asymptotic theoretical work in regression is carried out for the square loss, where estimators can be obtained through closed-form expressions. In this paper, we use and extend tools from the convex optimization literature, namely self-concordant functions, to provide simple extensions of theoretical results for the square loss to the logistic loss. We apply the extension techni...

متن کامل

Stagewise Lasso Stagewise Lasso

Many statistical machine learning algorithms (in regression or classification) minimize either an empirical loss function as in AdaBoost, or a penalized empirical loss as in SVM. A single regularization tuning parameter controls the trade-off between fidelity to the data and generalibility, or equivalently between bias and variance. When this tuning parameter changes, a regularization “path” of...

متن کامل

Greedy Algorithms for Classification -- Consistency, Convergence Rates, and Adaptivity

Many regression and classification algorithms proposed over the years can be described as greedy procedures for the stagewise minimization of an appropriate cost function. Some examples include additive models, matching pursuit, and boosting. In this work we focus on the classification problem, for which many recent algorithms have been proposed and applied successfully. For a specific regulari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008